Precursor sequence, processing, and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane.
نویسندگان
چکیده
The asymmetric unit membrane (AUM) is a highly specialized biomembrane elaborated by terminally differentiated urothelial cells. It contains quasi-crystalline arrays of 12-nm protein particles each of which is composed of six dumbbell-shaped subdomains. In this paper we describe the precursor sequence, processing and in vitro membrane insertion properties of bovine uroplakin II (UPII), a 15-kDa major protein component of AUM. The cDNA-deduced amino acid sequence revealed that UPII is synthesized as a precursor protein containing a cleavable signal peptide of approximately 26 amino acids, a long pro-sequence of approximately 59 residues harboring three potential N-glycosylation sites, and the mature polypeptide of 100 residues. In vitro translation of UPII mRNA demonstrated that UPII is indeed first synthesized as a 19-kDa precursor, which loses its signal peptide upon insertion into added microsomes; this process is accompanied by the acquisition of high mannose-type oligosaccharides giving rise to a 28-kDa precursor which is completely protected from the digestion by exogenous proteases. These results, together with the presence of a stretch of 25 hydrophobic amino acids at the C terminus, suggest that UPII protein is anchored to the lipid bilayer via its C-terminal membrane-spanning domain with its major N-terminal domain exposed luminally. The formation of the 15-kDa mature UPII requires the removal of the pro-sequence by a furin-like endoprotease. Since only mature UPII devoid of this pro-sequence can interact with 27-kDa uroplakin I, the proteolytic processing of UPII precursor may play an important role in regulating the assembly of AUM. Finally, we showed that genomic sequences cross-hybridizing with bovine UPII cDNA are present in many mammals suggesting that UPII performs a highly conserved function in the terminally differentiated cells of mammalian urinary bladder epithelium.
منابع مشابه
Cloning and Sequence Analysis of Gene Encoding OipA from Iranian Clinical Helicobacter pylori
Background: Outer inflammatory protein A (OipA) is one of the important adhesins of H. pylori and a valuable candidate for vaccine development. Its gene is under "on-off" switch status which correlates with OipA protein expression. Objectives: We aimed to obtain a recombinant OipA clone (with "on" status) from an Iranian clinical isolate. Materials and Methods: A clinical H. pylori-isolate demo...
متن کاملP-65: Effective Parameters on the Bovine Follicle Stimulating Hormone Expression in The Pichia Pastoris System
Background: Bovine follicle-stimulating hormone (bFSH) is a heterodimer hormone that consists of a common -subunit which noncovalently associated with the hormone-specific -subunit. During the past 15 years, the methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production because it is able to use methanol as a sole carbon and energy source. Th...
متن کاملUroplakin I: a 27-kD protein associated with the asymmetric unit membrane of mammalian urothelium
The luminal surface of mammalian urothelium is covered with numerous plaques (also known as the asymmetric unit membrane or AUM) composed of semi-crystalline, hexagonal arrays of 12-nm protein particles. Despite the presumed importance of these plaques in stabilizing the urothelial surface during bladder distention, relatively little is known about their protein composition. Using a mouse mAb, ...
متن کاملMammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins.
The asymmetric unit membrane (AUM) forms the apical plaques of mammalian urothelium and is believed to play a role in strengthening the urothelial apical surface thus preventing the cells from rupturing during bladder distention. We have shown previously that purified bovine AUMs contain four major integral membrane proteins: the uroplakins Ia (27 kDa), Ib (28 kDa), II (15 kDa), and III (47 kDa...
متن کاملProduction of Brucella lumazine Synthase Recombinant Protein to Design a Subunit Vaccine against Undulant Fever
Brucella bacterium causes Brucellosis, an infectious disease spreading from animals to human. Brucella lumazine synthase (BLS) is a highly immunogenic protein with adjuvant properties, which has been introduced as an effective protein carrier for vaccine development. This protein also plays a significant role in inducing immune system. This study aimed to clone, express, and purify the BLS gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 269 3 شماره
صفحات -
تاریخ انتشار 1994